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Abstract. We start from a parity-breaking MCS QED3 model with spontaneous breaking of the gauge
symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of
numerical values for the e−e−− bound state. Three expressions (Veff↑↑ , Veff↑↓ , Veff↓↓) are obtained according
to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter
electronic excitations, these three potentials become degenerated. The resulting potential is implemented in
the Schrödinger equation and the variational method is applied to carry out the electronic binding energy.
The resulting binding energies in the scale of 10−100 meV and a correlation length in the scale of 10−30 Å
are possible indications that the MCS-QED3 model adopted may be suitable to address an eventual case
of e−e− pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy
scale of 10−100 meV to fix the breaking of the U(1)-symmetry.

PACS. 11.10.Kk Field theories in dimensions other than four – 11.15.Ex Spontaneous breaking of gauge
symmetries – 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons,
resonating valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.)

1 Introduction

The advent of high-Tc superconductivity [1], in 1986,
brought about a great excitation in both the theoretical
and experimental physical panorama, drawing attention
for the issue of formation of Cooper pairs in planar sys-
tems. In the late 90´s, there arose a field-theoretical ap-
proach to address the mechanism of electronic pairing: the
evaluation of the electron-electron Möller scattering as a
tool for the attainment of the e−e− interaction potential
in the nonrelativistic approximation. This line of action
searches for an attractive potential in such a way to in-
duce the formation of correlated electron-electron pairs,
(the charge carriers of the high-Tc superconductors). The
present work shall follow this general procedure.

By direct application of the Gauss´s law in (1 + 2)-
dimensions for the massless gauge field, the Coulombian
interaction takes on the form of a confining potential
(ln r). The Kato condition [2] establishes the finiteness
of the number of bound states, in D = 1 + 2, asso-
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ciated to a certain potential V, and can be used as a
criterion for determining the character confining or con-
densating of the potential. The fact the logarithmic poten-
tial to be confining (according to the Kato criterion) indi-
cates it does not lead to bound states, becoming clear the
need of a finite range, screened interaction. The Chern-
Simons (CS) term [3] is then introduced as the gener-
ator of (topological) mass for the photon, implying an
intensive screening of the Coulombian interaction. The
Maxwell-Chern-Simons (MCS) model, a particular case
of Planar Quantum Electrodynamics - QED3, then arose
as a theoretical framework able for providing an attrac-
tive but not confining electron-electron interaction. This
model was then used by some authors [4,6,8,9] as ba-
sic tool for evaluation of the Möller scattering amplitude
at tree-level, whose Fourier transform (in the Born ap-
proximation) yields the e−e− interaction potential. In a
general way, these works have led to the same result: the
electron-electron potential comes out attractive whenever
the topological mass (ϑ) exceeds the electron mass (me).
Georgelin and Wallet [10] started from two MCS-QED3

Lagrangians, the first (second) with the gauge field non-
minimally coupled to fermions (bosons), in such a way to
consider the introduction of the anomalous momentum of
the electron in the problem. Working in the perturbative
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regime (1/k � 1), these authors found an attractive po-
tential for fermions (Vψψ < 0) , and also for scalar bosons
(Vϕϕ < 0) , in the nonrelativistic approximation. The pres-
ence of the nonminimal coupling seems to be the key-
factor for the attainment of the attractive potential be-
tween charges with the same sign. In this case, the poten-
tial remains negative even in the limit of a small topologi-
cal mass (ϑ� me), under a suitable choice of parameters.
The nonrenormalizability of this model (due to the non-
minimal coupling), however, implies a restriction to the
validity of their results only at tree-level calculations.

All the MCS models, except the one exposed in refer-
ence [10], failed under the perspective of yielding a real-
istic electron-electron condensation into the domain of a
condensed matter system due to the condition ϑ > me,
necessary for making the e−e− pairing feasible. One must
believe to be unlikely the existence of a physical excitation
with so large energy in a real solid state system (the super-
conductors usually are characterized by excitations in the
meV scale). We will see that the introduction of the Higgs
mechanism in the context of the MCS-electrodynamics
will bring out a negative contribution to the scattering
potential that will allow a global attractive potential de-
spite the condition ϑ > me.

In our work, we shall rely on a version of planar QED
for which the photonic excitations appear as a by-product
of a spontaneous symmetry breaking (SSB) realized on
the MCS Lagrangian. The consideration of a Higgs sec-
tor (a complex scalar field endowed with a self-interaction
potential so as to induce a SSB) in the context of the
MCS model provides a new mass term to the topologi-
cal gauge field: the well-known Proca term

(
m2AµA

µ
)
.

In this way, once the spontaneous breaking of the local
U(1)-symmetry has taken place, a neutral massive Higgs
scalar remains and the gauge field becomes a Maxwell-
Chern-Simons-Proca vector field, a clear reference to its
two mass components (the topological and the Proca one).
The physical mass of such a photon, that may assume two
different values, will be written in terms of these two mass
parameters, as explicitly given by the expressions read off
from the poles of the gauge-field propagator (see Sect. 3).
For our purposes, one can assert that the enhancement of
complexity determined by the coexistence of a topologi-
cal and a Proca term in the gauge sector is compensated
by the attainment of a gauge propagator with two massive
poles (standing for the photon mass). Operationally, in the
perspective of a tree-level field-theory investigation, the
determination of the gauge propagator and the Feynman
rules enable us to derive the interaction potential between
two elementary particles as mediated by this gauge field.
This paper, therefore, adopts as starting point a MCS-
Proca Lagrangian with the clear purpose of performing a
usual field-theory derivation (in the non-relativistic limit)
of an interaction potential, which is further on applied
to obtain bound states (in a typical quantum mechani-
cal procedure). Last but not least, the fact that the pho-
ton becomes massive is a microscopical information that
renders feasible the observation of the Meissner effect in
such a system, which opens the applicability of such kind

of model for an eventual superconducting planar system
endowed with parity breaking [11]. This theoretical possi-
bility, however, is out of the scope of this work.

In a recent paper [14], we have derived an interac-
tion potential associated to the scattering of two iden-
tically polarized electrons in the framework of a Maxwell-
Chern-Simons QED3 with spontaneous breaking of
local-U(1) symmetry. Our result revealed the interesting
possibility of an attractive electron-electron interaction
whenever the contribution stemming from the Higgs sec-
tor overcomes the repulsive contribution from the gauge
sector, which can be achieved by an appropriate fitting
of the free parameters. In the present work, we generalize
the results attained in references [14,16] contemplating the
existence of two fermionic families (ψ+, ψ−) , and perform-
ing the numerical evaluation of the e−e− binding ener-
gies. The procedure here accomplished is analogous to the
one enclosed in references [14,16]: starting from a QED3

Lagrangian (now built up by two spinor polarizations,
ψ+, ψ−) with SSB, one evaluates the Möller scattering
amplitudes (in the nonrelativistic approximation) having
the Higgs and the massive photon as mediators and the
corresponding interaction potential, that now emerges in
three different expressions: V↑↑ , V↑↓ , V↓↓ (depending on
the spin polarization of the scattered electrons). The same
theoretical possibility of attractiveness, pointed out in ref-
erence [14], is now manifested by these three potentials.
A numerical procedure (variational method) is then im-
plemented in order to carry out the binding energy of
the Cooper pairs. Having in mind the nonrelativistic ap-
proximation, a reduced potential is implemented into the
Schrödinger equation, whose numerical solution provides
the data contained in Tables 1, 2, 3. The achievement of
binding energies in the meV scale and correlation length
in the 10−30 Å scale is an indicative that the adopted
MCS-QED3 model may be suitable for addressing an even-
tual electronic pairing in a system endowed with parity-
breaking.

This paper is outlined as follows: in Section 2, we
present the QED3 Lagrangian, its general features and
one realizes the spontaneous breaking of U(1)-local sym-
metry that generates the Higgs boson and the Maxwell-
Chern-Simons-Proca photon; in Section 3, one evaluates
the amplitudes for the Möller scattering; their Fourier
transform will provide the e−e− interaction potentials V↑↑ ,
V↑↓ , V↓↓ (despite the complex form of these potentials,
they maintain the theoretical possibility of being attrac-
tive); in Section 4, one performs an analysis in order to
obtain the e−e− binding energies by means of the numeri-
cal solution of the Schrödinger equation (by the variational
method), whose results are disposed in Tables 1, 2, 3. In
Section 5, we present our general conclusions.

2 The MCS QED3 with spontaneous
symmetry breaking and two spinor
polarizations

The action for a QED3 model built up by two polar-
ization fermionic fields (ψ+, ψ−), a gauge (Aµ) and a
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complex scalar field (ϕ), mutually coupled, and endowed
with spontaneous breaking of a local U(1)-symmetry
[12,14], reads as

SQED−MCS =
∫

d3x

{
− 1

4
FµνFµν + iψ+γ

µDµψ+

+ iψ−γ
µDµψ− +

1
2
θεµvαAµ∂vAα −me

(
ψ+ψ+ − ψ−ψ−

)
− y

(
ψ+ψ+ − ψ−ψ−

)
ϕ∗ϕ+Dµϕ∗Dµϕ− V (ϕ∗ϕ)

}
, (1)

where V (ϕ∗ϕ) represents the sixth-power self-interaction
potential,

V (ϕ∗ϕ) = µ2ϕ∗ϕ+
ζ

2
(ϕ∗ϕ)2 +

λ

3
(ϕ∗ϕ)3, (2)

which is responsible for the SSB; it is the most general one
renormalizable in (1+2)-dimensions [13]. The mass dimen-
sions of the parameters µ, ζ, λ and y are respectively: 1,
1, 0 and 0. For the present purpose, we are interested only
on stable vacuum, restriction satisfied by imposing some
conditions on the potential parameters: λ > 0, ζ < 0
and µ2 ≤ 3ζ2

16λ . The covariant derivatives are defined as:
Dµψ± = (∂µ + ie3Aµ)ψ± and Dµϕ = (∂µ + ie3Aµ)ϕ,
where e3 is the coupling constant of the U(1)-local gauge
symmetry, here with dimension of (mass)1/2, particularity
that will be more explored in the numerical analysis sec-
tion. In (1 + 2)-dimensions, a fermionic field has its spin
polarization fixed up by the mass sign [18]; however, in the
action (1), it is manifest the presence of two spinor fields
of opposite polarization. In this sense, it is necessary to
stress that we have two positive-energy spinors (two spinor
families), both solutions of the Dirac equation, each one
with one polarization state according to the sign of the
mass parameter, instead of the same spinor with two pos-
sibilities of spin-polarization.

Considering 〈ϕ〉 = v, the vacuum expectation value for
the scalar field product ϕ∗ϕ is given by:

〈ϕ∗ϕ〉 = v2 = −ζ/ (2λ) +
[
(ζ/ (2λ))2 − µ2/λ

]1/2

,

while the condition for minimum reads as: µ2+ ζ
2v

2+λv4 =
0. After the spontaneous symmetry breaking, the scalar
complex field can be parametrized by ϕ = v + H + iθ,
where H represents the Higgs scalar field and θ the would-
be Goldstone boson; the SSB will be manifest when this
parametrization is replaced in the action (1). Thereafter,
in order to preserve the manifest renormalizability of the
model, one adopts the ´t Hooft gauge by adding the fixing
gauge term (SgtRξ

=
∫

d3x[− 1
2ξ (∂

µAµ−
√

2ξMAθ)2]) to the
broken action; finally, by retaining only the bilinear and

the Yukawa interaction terms, one has,

SSSB
QED =

∫
d3x

{
−1

4
FµνFµν +

1
2
M2
AA

µAµ− 1
2ξ

(∂µAµ)2

+ ψ+(i/∂ −meff)ψ+ + ψ−(i/∂ +meff)ψ− +
1
2
θεµvαAµ∂vAα

+ ∂µH∂µH −M2
HH

2 + ∂µθ∂µθ −M2
θ θ

2

− 2yv
(
ψ+ψ+ − ψ−ψ−

)
H − e3

(
ψ+/Aψ+ + ψ−/Aψ−

)}
,

(3)

whose mass parameters,

M2
A = 2v2e23, meff = me + yv2,

M2
H = 2v2

(
ζ + 2λv2

)
, M2

θ = ξM2
A, (4)

are entirely or partially dependent on the SSB mecha-
nism. The Proca mass, M2

A, represents the mass acquired
by the photon through the Higgs mechanism, while the
Higgs mass, M2

H , is the one associated with the real scalar
field. The Higgs mechanism also corrects the mass of the
electron, resulting in an effective electronic mass, meff . On
the other hand, the would-be Goldstone mode, endowed
with mass (M2

θ ), does not represent a physical excitation,
since ξ is just a unphysical (dimensionless) gauge-fixing
parameter. At this moment, it is instructive to point out
the presence of two photon mass-terms in equation (3): the
Proca and the topological one. The physical mass of the
gauge field will emerge as a function of two mass param-
eters, as shown in the next section.

3 The electron-electron scattering potential
in the nonrelativistic limit

In the low-energy limit (Born approximation), the two-
particle interaction potential is given by the Fourier trans-
form of the two-particle scattering amplitude [19]. It
is important to stress that, in the case of the nonrela-
tivistic Möller scattering, one should consider only the t-
channel (direct scattering) [19] even for indistinguishable
electrons, since in this limit they recover the classical no-
tion of trajectory. The Möller scattering will be mediated
by two particles: the Higgs scalar and the massive gauge
field. From the action (3), one reads off the propagators
associated to the Higgs scalar and Maxwell-Chern-Simons-
Proca field:

〈H(k)H(−k)〉 =
i
2

1
k2 −M2

H

;

〈Aµ(k)Aν(−k)〉 = −i
{

k2 −M2
A

(k2 −M2
A)2 − k2θ2

(
ηµν − kµkν

k2

)

+
ξ

(k2 − ξM2
A)
kµkν
k2

+
θ

(k2 −M2
A)2 − k2θ2

iεµανkα
}
·
(5)
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The photon propagator can be split in the following form,

〈AµAν〉 = −i
[

C+

k2 −M2
+

+
C−

k2 −M2−

](
ηµν − kµkν

k2

)

+
−iξkµkν

k2 (k2 − ξM2
A)

+ i
[

C

k2 −M2
+

− C

k2 −M2−

]
εµανk

α,

with the positive definite constants C+, C−, C and the
quadratic masses poles M2

+ and M2− given by:

C± =
1
2

[
1 ± θ√

4M2
A + θ2

]
; C =

1√
4M2

A + θ2
;

M2
± =

1
2

[(
2M2

A + θ2
) ± |θ|

√
4M2

A + θ2
]
. (6)

Here, C± and C are constants with mass dimension 0
and −1 respectively, whereas M2

± represent the two pos-
sible expressions for the physical mass of the photon
(around which occur photonic excitations). Consequently,
these two masses, rather than M2

A and θ2, will be the rele-
vant ones in the forthcoming evaluation of the interaction
potential.

From the action (3), it is easy to extract the vertex
Feynman rules: Vψ±Hψ± = ±2ivy; VψAψ = ie3γµ. Since in
the low-energy limit only the t-channel must be consid-
ered, the whole scattering amplitudes are written in the
form:

−iM±H± = u±(p1)(±2ivy)u±(p1
′)

× [〈H(k)H(−k)〉]u±(p2)(±2ivy)u±(p2
′),

(7)

−iM±H∓ = u±(p1)(±2ivy)u±(p1
′)

× [〈H(k)H(−k)〉]u∓(p2)(∓2ivy)u∓(p2
′),

(8)

−iM±A± = u±(p1)(ie3γµ)u±(p1
′)

× [〈Aµ(k)Aν(−k)〉]u±(p2)(ie3γν)u±(p2
′),
(9)

−iM±A∓ = u±(p1)(ie3γµ)u±(p1
′)

× [〈Aµ(k)Aν(−k)〉]u∓(p2)(ie3γν)u∓(p2
′).
(10)

The first two expressions represent the scattering ampli-
tude mediated by the Higgs particles for equal and oppo-
site electron polarizations, while in the last two ones the
mediator is the massive Chern-Simons-Proca photon. The
spinors u+(p), u−(p) stand for the positive-energy solu-
tion of the Dirac equation, satisfying the normalization
conditions: u±(p)u±(p) = ±1. Working in the center-of-
mass frame, the momenta of the interacting particles and
the momentum transfer take a simpler form, useful for
writing the spinors u+(p), u−(p), as it is properly shown
in the Appendix. With these definitions, one carries out

the fermionic current elements, also displayed in the Ap-
pendix, so that the evaluation of the scattering amplitudes
(for low momenta approximation), at tree-level, associated
to the Higgs and the gauge particle become:

MHiggs = −2v2y2

(
1

k2 +M2
H

)
, (11)

M↑A↑ = M1 + M2 + M3,

M↓A↓ = M1 −M2 + M3,

M↑A↓ = M↓A↑ = M1 + M3,

with:

M1 = e23

[
C+

k2 +M2
+

+
C−

k2 +M2−

]
,

M2 =
e23k

2

meff

[
C

k2 +M2
+

− C

k2 +M2−

]
,

M3 =
−i sinφ

(1 − cosφ)
M2, (12)

where it was used k2 = 2p2(1 − cosφ). Furthermore, it
is clear that the Higgs amplitude is independent of the
electron polarization, while the gauge amplitude splits
into three different expressions, depending on the po-
larization of the scattered electrons. The terms M1,M2

correspond to the real part of the Möller scattering am-
plitude, while M3 describes the Aharonov-Bohm am-
plitude for fermions [4,8,10]. The interaction potentials
are obtained through the Fourier transform of the scat-
tering amplitude (inside the Born approximation limit):
V (r) =

∫
d2k

(2π)2Meik·r. According to this approximation,
equation (11) yields an attractive Higgs potential,

VHiggs(r) = − 1
2π

2v2y2Ko(MHr), (13)

while in the gauge sector there appear three different po-
tentials (depending on the polarization state):

Vgauge ↑↑(r) = V1(r) + V2(r) + V3(r),

Vgauge ↑↓(r) = V1(r) + V3(r),

Vgauge ↓↓(r) = V1(r) − V2(r) + V3(r),

V1(r), V2(r), V3(r) being respectively the Fourier trans-
forms of the amplitudes M1, M2, M3, given explicitly by:

V1(r) =
e23
2π

[
C+Ko(M+r) + C−Ko(M−r)

]
, (14)

V2(r) = − e23
2π

C

meff

[
M2

+Ko(M+r) −M2
−Ko(M−r)

]
, (15)

V3(r) = 2
e23
2π

Cl

meffr

[
M+K1(M+r) −M−K1(M−r)

]
. (16)
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The complete potential expressions are obtained join-
ing the Higgs and gauge contributions: V (r) = VHiggs +
Vgauge:

V (r)↑↑ = − 1
2π

2v2y2Ko(Mhr) +
e23
2π

{(
C+ − C

m
M2

+

)

×Ko(M+r) +
(
C− +

C

meff
M2

−

)
Ko(M−r)

+ 2
Cl

meff r
(M+K1(M+r) −M−K1(M−r))

}
,

(17)

V (r)↑↓ = − 1
2π

2v2y2Ko(Mhr) +
e23
2π

{
C+Ko(M+r)

+ C−Ko(M−r) + 2
Cl

meffr
[M+K1(M+r)+

−M−K1(M−r)]
}
, (18)

V (r)↓↓ = − 1
2π

2v2y2Ko(Mhr) +
e23
2π

{(
C+ +

C

meff
M2

+

)

×Ko(M+r) +
(
C− − C

meff
M2

−

)
Ko(M−r)

+ 2
Cl

meffr
(M+K1(M+r) −M−K1(M−r))

}
·
(19)

Here, Ko(x) and K1(x) are the modified Bessel func-
tions and l is the angular momentum. The last three equa-
tions represent the tree-level potentials evaluated at the
Born approximation. Now, it is convenient to define the
limit of validity of the potentials (17, 18, 19). They have
been derived in the low-energy limit, consequently they
must be valid in the perturbative regime, where the loop
corrections are negligible before the semi-classical terms.
For a typical MCS model, the perturbative limit is given
by e2

θ � 1; in the case of the present model, nevertheless,
there are four dimensionless parameters e23/m, e23/MH ,
e23/M+, e23/M−. According to the discussion realized in
refernce [14], the pertubative regime is valid whenever
e23/M+ � 1 and y � 1 (the first condition obviously
implies e23/m� 1).

A remarkable point to be highlighted concerns the
attainment of three different potentials: V (r)↑↑, V (r)↑↓,
V (r)↓↓. Our results put in explicit evidence the depen-
dence of the potential on the spin state. Were parity pre-
served, this would not be the result; however, by virtue of
the explicit breaking of parity, as induced by the Chern-
Simons term, expressions (17, 18, 19) differ from one an-
other as it can be understood on the basis of parity trans-
formation arguments. Another signal of parity-breaking is
the linear dependence of V on l: l → −l is not a symmetry
of the potential.

Although the gauge invariance is broken by the
appearance of a Proca mass during the SSB, one expects
that the interaction potential associated to the system
comes to preserve the characteristics of the original
Lagrangian (before the SSB). This fact leads us to study

a way to assure the gauge invariance of the effective
interaction potential. Analysis of the Galilean limit
of the field theories in (1+2)-dimensions, carried out
by Hagen [7], have shown that the 2-body scattering
problem, as mediated by a gauge particle, must lead to
an effective potential that preserves the structure of a
perfect square form (l − α2)2, and can be identified with
the Aharonov-Bohm scattering potential. The quartic
order term

(
α4

)
is related to the presence of 2-photon

diagrams induced by the seagull vertex (ϕ∗ϕAµAµ), and
thus associated to the gauge invariance of the resulting
potential. In this way, the potential structure (l − α2)2
must be also pursued in more complex electron-electron
scatterings panoramas, in order to ensure gauge invari-
ance. Actually, this is just the signal of a more general
result. Electron-electron scatterings, in general, no mat-
ter the complexity of the interactions, must exhibit the
combination (l − α2)2 for the sake of gauge invariance
of the final result. This kind of procedure is found in
reference [8], where a nonrelativistic interaction potential
was derived in the context of a MCS-QED3 (without
scalar sector), in the perturbative regime, 1/k � 1,
with k being the statistic parameter (in our present
case k ≡ 4πθ/e23). In this reference, in order to ensure
the gauge invariance, at the low-energy approximation,
one takes into account the two-photons diagrams, which
amounts to adding up to the tree-level potential the
quartic order term { e2

2πθ [1− θrK1(θr)]}2, turning out into
the following gauge-invariant effective potential form [4,8]:

VMCS(r) =
e2

2π

[
1 − θ

me

]
K0(θr)

+
1

mer2

{
l − e2

2πθ
[1 − θrK1(θr)]

}2

· (20)

In the expression above, the first term corresponds to
the electromagnetic potential, whereas the last one incor-
porates the centrifugal barrier

(
l/mr2

)
, the Aharonov-

Bohm term and the 2-photon exchange term. One ob-
serves that this procedure becomes necessary when the
model is analyzed or defined out of the pertubative limit.
In reference [10], for instance, one accomplishes an evalu-
ation of the scattering potential, in the Born approxima-
tion, whose final result is not supplemented by the term
{ e2

2πθ [1 − θrK1(θr)]}2, under the justification that deriva-
tion has been done in the pertubative regime (1/k � 1) .
In such a regime, the 2-photon term becomes negligible
(for it is proportional to 1/k2) and shows itself unable to
jeopardize the gauge invariance of the model.

In a scenery where one searches for applications to
condensed matter Physics, one must require θ � me, and
the scattering potential given by equation (20) then comes
out positive. This implication prevents a possible applica-
tion of this kind of model to superconductivity, where the
characteristic energies are of meV order. Since the effective
electron mass (meff = me+ yv2) is ∼ 105 eV, energy scale
much greater than that corresponding to the condensed
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matter interactions (meV), one must impose the follow-
ing condition on the physical excitations of the model:

meff 
 ϑ,MA,M±. (21)

In the limit MA → 0, one has: M+ ∼ ϑ; in this situation,
the dimensionless parameter e23/M+ reduces to e23/ϑ, that
now lies outside the pertubative regime, since ϑ is now
small (∼ meV). Therefore, in this energy scale, our results
may not be restricted to the pertubative limit; the con-
sideration of the 2-photon term to equations (17, 18, 19)
becomes then relevant in order to assure the gauge invari-
ance of these potentials. As a final result, one rewrites the
three expressions for the effective-gauge-invariant scatter-
ing potentials:

Veff↑↑(r) = − 1
2π

2v2y2K0(MHr) +
e23
2π

{[
C+ − C

meff
M2

+

]

×K0(M+r) +
[
C− +

C

meff
M2

−

]
K0(M−r)

}

+
1

meffr2

{
l +

e23
2π
Cr[M+K1(M+r)

−M−K1(M−r)]
}2

, (22)

Veff↑↓(r) = − 1
2π

2v2y2K0(MHr)

+
e23
2π

[C+Ko(M+r) + C−Ko(M−r)]

+
1

meffr2

{
l +

e23
2π
Cr[M+K1(M+r)

−M−K1(M−r)]
}2

, (23)

Veff↓↓(r) = − 1
2π

2v2y2K0(MHr) +
e23
2π

{[
C+ +

C

meff
M2

+

]

×Ko(M+r) +
[
C− − C

m eff
M2

−

]
Ko(M−r)

}

+
1

meff
r2

{
l +

e23
2π
Cr[M+K1(M+r)

−M−K1(M−r)]
}2

, (24)

where l2

mr2 represents the centrifugal barrier, and the term
proportional to C2 comes from the 2-photon exchange.

In the energy scale given by condition (21), the pro-
portionality coefficients of V2(r) become negligible:

meff 
 ϑ,MA,M± =⇒ C

meff
M2

+ � 1,
C

meff
M2

− � 1.

(25)
As a consequence of these considerations, one can observe
that only the first term of the expressions (22, 23, 24)
is attractive, which corresponds to the Higgs interaction.
At the same time, the potential V2(r) reveals itself small
before V1(r) and V3(r), leading to a simplification in the

expressions (22, 23, 24), that degenerate to a single form:

Veff(r) = − 1
2π

2v2y2K0(MHr)

+
e23
2π

[
C+Ko(M+r) + C−Ko(M−r)

]

+
1

meffr2

{
l +

e23
2π
Cr[M+K1(M+r) −M−K1(M−r)]

}2

·
(26)

The fact that C± > 0, ∀ ϑ,MA makes the second term
(proportional to e2/2π) of the equation above to be pos-
itive, revealing the repulsive nature of gauge sector. This
trivial analysis shows that the potentials (22, 23, 24) will
be attractive only when the contribution originated from
the Yukawa interaction overcomes the one coming from
the gauge sector, which can be achieved by accomplishing
a suitable fitting on the model parameters. The fulfillment
of this condition can render the formation of e−e− bound
states feasible , once the above potentials are “weak” in
the sense of Kato criterion, analyzed by Chadan et al. [2] in
the context of the low-energy scattering theory in (1+2)-
dimensions.

Finally, it is instructive to show how the gauge sectors
of the potentials (22, 23, 24) behave in the limit of a van-
ishing Proca mass: MA → 0. In this case, the propagator
of the gauge field reduces to the Maxwell-Chern-Simons
one, leading to the following limits:

M+ −→ θ; M− −→ 0; C+ −→ 1;C− −→ 0;

K1(M−r) −→ 1
M−r

; C −→ 1
θ
; (27)

lim
MA−→0

V↑↑(r) =
e23
2π

(1 − θ

meff
)Ko(θr)

+
1

meffr2

[
l − e23

2πθ
(1 − θrK1(θr))

]2

,

(28)

lim
MA−→0

V↑↓(r) =
e23
2π
Ko(θr)

+
1

meffr2

[
l − e23

2πθ
(1 − θrK1(θr))

]2

,

(29)

lim
MA−→0

V↓↓(r) =
e23
2π

(1 +
θ

meff
)Ko(θr)

+
1

meffr2

[
l − e23

2πθ
(1 − θrK1(θr))

]2

.

(30)

One remarks that equation (28) encloses exactly the same
result achieved by Dobrolibov [8] et al. and others [4,9]
for the scattering of two up-polarization electrons, which
enforces the generalization realized in this paper.
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4 Numerical analysis

The numerical procedure adopted here consists on
the implementation of the variational method for the
Schrödinger equation supplemented by the interaction po-
tential (26). In this sense, it is necessary to expose some
properties of the wavefunction representing the e−e− and
of the two-dimensional Schrödinger equation.

4.1 The composite wave-function and the Schrödinger
equation

The Pauli exclusion principle states the antisym-
metric character of the total two-electron wavefunc-
tion (Ψ) with respect to an electron-electron permuta-
tion: Ψ(ρ1, s1,ρ2, s2) = −Ψ(ρ2, s2,ρ1, s1). Assuming that
no significant spin-orbit interaction takes place, the func-
tion Ψ can be split into three independent functions:
Ψ(ρ1, s1,ρ2, s2) = ψ(R)ϕ(r)χ (s1, s2), which represent, re-
spectively, the center-of-mass wave function, the relative
one, and the spin wave function (R and s being the center-
of-mass and spin coordinates respectively, while r is the
relative coordinate of the electrons). Taking into account
the Pauli principle, the total wavefunction Ψ in the center-
of-mass frame reads as

ΨS=1 = ϕodd(r)χS=1
even(s1, s2) ,

ΨS=0 = ϕeven(r)χS=0
odd (s1, s2) , (31)

where χS=0, χS=1, ϕeven(r), ϕodd(r) stand respectively for
the (antisymmetric) singlet spin-function, the (symmetric)
spin triplet, the even space-function (l = 0: s-wave, l = 2:
d-wave), and the odd space-function (l = 1: p-wave, l = 3:
f -wave).

Within the nonrelativistic approximation, the bind-
ing energy associated to an e−e− pair is given by planar
Schrödinger equation for the relative space-function ϕ(r),

∂2ϕ(r)
∂r2

+
1
r

∂ϕ(r)
∂r

− l2

r2
ϕ(r) + 2µeff [E − V (r)]ϕ(r) = 0 ,

(32)
where V (r) represents the interaction potential given by
equation (26), and µeff = 1

2meff , is the effective reduced
mass of the system. By means of the following transfor-
mation ϕ(r) = 1√

r
g(r), one has

∂2g(r)
∂r2

− l2 − 1
4

r2
g(r) + 2µeff [E − V (r)]g(r) = 0 . (33)

4.2 The variational method and the choice of the trial
function

To work out the variational method, one must take as
starting point the choice of the trial function that repre-
sents the generic features of the e−e− pair. The definition
of a trial function must observe some conditions, such as
the asymptotic behavior at infinity, the analysis of its free

version and its behavior at the origin. For a zero angular
momentum (l = 0) state, the equation (33) becomes{

∂2

∂r2
+

1
4r2

+ 2µeff [E + CsK0(MHr)]
}
g(r) = 0, (34)

whose free version (V (r) = 0), for l = 0 state, [ ∂
2

∂r2 +
1

4r2 + k2]u(r) = 0, has as solution u(r) = B1
√
rJ0(kr) +

B2
√
rY0(kr), with B1 and B2 being arbitrary constants

and k =
√

2µeffE. In the limit r → 0, this solution
goes simply as u(r) −→ √

r + λ
√
r ln(r). Since the sec-

ond term in the last equation behaves like an attractive
potential, −1/4r2, this implies the possibility of obtain-
ing a bound state (E < 0) even for V (r) = 0 [2]. This
is not physically acceptable, leading to a restriction on
the needed self-adjoint extension of the differential op-
erator −d2/dr2 − 1/4r2. Among the infinite number of
self-adjoint extensions of this operator, the only physical
choice corresponds to the Friedrichs extension (B2 = 0),
which behaves like

√
r at the origin, indicating this same

behavior for u(r). In this way the behavior of the trial
function at the origin is determined. The complete equa-
tion, V (r) = 0, will preserve the self-adjointness of free
Hamiltonian, if the potential is “weak” in the sense of the
Kato condition:

∫ ∞
0 r(1+ | ln(r)|)|V (r)|dr <∞ . Provided

the interaction potential, given by equation (26), satis-
fies the Kato condition, the self-adjointness of the total
Hamiltonian is assured and the existence of bound states
is allowed. On the other hand, at infinity, the trial function
must vanish asymptotically in order to fulfill square inte-
grability. Therefore, a good choice can then be given by
g(r) = f(r) exp(−βr), where f(r) is a well-behaved func-
tion that satisfies the limit condition: limr→0 f(r) =

√
r.

By simplicity, the trial function (for zero angular momen-
tum) read as

g(r) =
√
r exp(−βr) , (35)

where β is a free parameter whose variation approximately
determines an energy minimum.

An analogous procedure can be undertaken to deter-
mine the behavior of the trial function when the angu-
lar momentum is different from zero (l = 0). In this
case, and in the limit r → 0, equation (33) reduces

to [ ∂
2

∂r2 − l2− 1
4

r2 + k2]u(r) = 0 , whose general solution
reads as u(r) = B1r

(l+1/2) + B2r
(−l+1/2). For l > 0, the

choice r(l+1/2) entails a trial function that is well-behaved
at the origin. Since the Schrödinger equation depends only
on l2, any of the choices, l > 0 or l < 0, is enough to pro-
vide the energy values of the physical states and one gets

g(r) = r1/2+l exp(−βr) , (36)

where β is again a spanning free parameter to be nu-
merically fixed in order to maximize the binding energy.
Though this last result is mathematically correct, we
should point out that the discussion regarding non-zero
angular momentum states here is merely for the sake of
completeness. The true wave-function in this case should
include the angular components which remain precluded
in this approach.
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4.3 The analysis of the potential and the numerical
data

The numerical analysis of the potentials Veff↑↑ , Veff↑↓ , Veff↓↓
is totally dependent on the parameters of the field-
theoretical model. As a first step, it is convenient to realize
an analysis on the relevant parameters and thereafter to
initiate a numerical procedure. The central purpose of this
section is to demonstrate that the potentials obtained are
attractive and lead to the formation of bound states e−e−,
whose energy is situated into a range relevant to some con-
densed matter systems, like the high-Tc superconductors.

As well-known, to parallel-spin states (spin triplet)
there must be a p-wave (spin triplet and l = 1) asso-
ciated, whereas the antiparallel-spin states (spin singlet)
are linked to an s-wave (spin singlet and l = 0). Here, de-
spite the parity-breakdown to be associated to the state
l = 1, the s-wave can also appear as solution, since the
breakdown is not necessarily manifest in all states. Given
the degeneracy of the potentials Veff↑↑ , Veff↑↓ , Veff↓↓on the
reduced potential (26), the issue concerning the wavefunc-
tion symmetry looses some of its status: both the s- and
p-wave appear as solutions for the system. According to
equations (35, 36), the implementation of the variational
method requires a trial-function with r1/2−behaviour at
the origin in the case of an s-wave and a r3/2−behaviour
for a p-wave.

Before starting the numerical calculations, it is instruc-
tive to show the relevant parameters:

e23 =
e2

l⊥
=

1
137, 04

1973, 26
l⊥

=
14, 399
l⊥

, (37)

α =
ϑ

MA
, (38)

ζ < 0, λ ≥ 3
4
|ζ|
υ2
, (39)

λ =
3
4
|ζ|
ν2

=⇒M2
H = ν2|ζ|, (40)

λ =
|ζ|
ν2

=⇒M2
H = 2ν2|ζ|. (41)

Specifically, in D = 1+2, the electromagnetic coupling
constant squared, e23, has dimension of mass, rather than
the dimensionless character of the usual four-dimensional
QED4 coupling constant. This fact might be understood
as a memory of the third dimension that appears (into
the coupling constant) when one tries to work with a the-
ory intrinsically defined in three space-time dimensions.
This dimensional peculiarity could be better implemented
through the definition of a new coupling constant in three
space-time dimensions [4,5]: e → e3 = e/

√
l⊥, where l⊥

represents a length orthogonal to the planar dimension.
The smaller is l⊥, the smaller is the remnant of the frozen
dimension, the larger is the planar character of the model
and the coupling constant e3, what reveals its effective
nature. In this sense, it is instructive to notice that the
effective value of e23 is larger than e2 = 1/137 whenever
l⊥ < 1973.26 Å, since 1 (Å)−1 = 1973.26 eV. This partic-
ularity broadens the repulsive interaction for small l⊥ and

requires an even stronger Higgs contribution to account for
a total attractive interaction. Finally, this parameter must
be evaluated inside a range appropriated to not jeopardize
the planar nature of the system, so that one requires that:
2 < l⊥ < 15 Å. The parameter α is defined as the ratio be-
tween the Proca mass and the Chern-Simons mass, while
ζ, λ are parameters of V−potential and are important to
assure a stable vacuum, condition given by equation (39).
The imposition of some relations between ζ, λ, ν2, like
equations (40) e (41), imply a kind of expression for the
Higgs mass that exhibit dependence only on ν2 and |ζ|.
This set of conditions impose a lower bound for the Higgs
mass: M2

Hmin = 3|ζ|/4λ.
Besides the factors above, the entire determination of

the potential (26) also depends on v2, the vacuum expecta-
tion value (v.e.v.), and on y, the parameter that measures
the coupling between the fermions and the Higgs scalar.
Being a free parameter, v2 indicates the energy scale of
the spontaneous breakdown of the U(1)−local symmetry,
usually determined by some experimental data associated
to the phenomenology of the model under investigation,
as it occurs in the electroweak Weinberg-Salam model, for
example. On the other hand, the y-parameter measures
the coupling between the fermions and the Higgs scalar,
working in fact as an effective constant that embodies con-
tributions of all possible mechanisms of the electronic in-
teraction via Higgs-type (scalar) excitations, as the spin-
less bosonic interaction mechanisms: phonons, plasmons,
and other collective excitations. This theoretical similar-
ity suggests an identification of the field theory parameter
with an effective electron-scalar coupling (instead of an
electron-phonon one): y → λes.

The numerical analysis is developed by means of
the implementation of the variational method on the
Schrödinger equation, supplemented by the degenerated
potential. The procedure is initiated by the use of the an
s-wave trial function: g (r) = r1/2e−βr, given by equa-
tion (35). Tables 1 and 2 exhibit the values of the e−e−
bound state and the average length of the e−e− state
(ξab) for Veff , in accordance with the input parameters
(ν2, Z, α, y, ζ), for l = 0. The degenerated potential ob-
viously assures the following equality: Eee↑↑ = Eee↓↓ =
Eee↑↓, ξab↑↑ = ξab↓↓ = ξab↑↓. Table 3 contains numerical
data generated by the variational method, for l = 1, start-
ing from the following trial function: ϕ (r) = r3/2e−βr,
given by equation (36).

From the data of the Tables 1, 2, 3, it is possible to get
an understanding of the influence of the parameters on the
values of the e−e− energy and ξab. When |ζ| and ν2 in-
crease, the Higgs mass grows up, reducing the range of the
attractive interaction, which is noticed through reduction
of the bound state energy. In the same way, the rising of
the α−parameter implies a larger Chern-Simons mass and
a reduction of the repulsive interaction range, determin-
ing an increment of the bound state energy. The parameter
l⊥ acts directly in the coupling constant e3: the bigger is
l⊥, the smaller is gauge coupling, and the smaller the re-
pulsive interaction, favoring again the increase of bound
state energy. The parameters ν2 and y act on the Higgs
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Table 1. Input parameters: ν2, l⊥, α, ζ, M2
H = ν2|ζ| and l = 0; output numerical data: Ee−e− and ξab. Trial function:

ϕ (r) = r1/2e−βr.

v2(meV) l⊥(Å) y α ζ (eV) MH =
√

ν2|ζ| β Ee−e−(meV) ξab(Å)

47.0 10.0 4.0 1.0 4.0 433.0 51.1 −59.2 19.3

47.0 10.0 4.0 0.5 4.0 433.0 51.8 −23.7 19.0

48.0 10.0 4.0 0.5 4.0 438.0 29.8 −50.2 16.6

48.0 10.0 3.9 1.0 4.0 438.0 29.8 −24.8 33.1

60.0 8.0 4.0 1.0 8.0 693.0 71.1 −33.3 13.9

60.0 8.0 4.0 0.5 6.0 600.0 69.2 −32.8 14.3

60.0 8.0 3.9 1.0 5.0 548.0 27.1 −30.4 36.4

70.0 7.0 4.0 0.4 7.0 700.0 89.2 −62.7 11.6

70.0 7.0 4.0 0.6 8.0 748.0 87.5 −54.0 11.3

70.0 7.0 3.9 1.0 7.0 700.0 51.2 −32.3 19.3

70.0 7.0 3.9 0.5 5.0 590.0 50.8 −38.5 19.4

Table 2. Input parameters: ν2, l⊥, α, ζ, M2
H = ν2|ζ| and l = 0; output numerical data: Ee−e− and ξab. Trial function: ϕ (r) =

r1/2e−βr.

v2 (meV) l⊥(Å) y α ζ (eV) MH =
√

2ν2|ζ| β Ee−e−(meV) ξab(Å)

40.0 12.0 4.0 1.0 2.0 400.0 56.1 −54.1 17.6

40.0 12.0 4.0 0.5 2.0 400.0 59.2 −24.5 16.7

40.0 12.0 4.0 0.3 2.0 400.0 58.1 −17.2 17.0

40.0 12.0 4.0 1.0 2.5 447.2 57.9 −31.4 17.0

50.0 10.0 4.0 1.5 6.3 793.7 79.1 −41.1 12.5

50.0 10 4.0 1.5 5.3 728.0 79.1 −63.1 12.5

60.0 8.0 4.0 0.5 3.0 600.0 69.2 −32.8 14.3

60.0 8.0 3.9 0.1 2.0 489.9 51.2 −38.6 19.3

60.0 8.0 3.9 1.0 2.0 489.9 27.2 −62.8 36.3

80.0 6.0 4.0 0.5 4.0 800.0 79.1 −40.2 12.5

80.0 6.0 4.0 0.1 3.0 692.8 78.1 −76.7 12.6

80.0 6.0 3.9 0.5 2.5 632.5 27.1 −36.0 36.4

80.0 6.0 3.9 0.6 2.5 632.5 29.8 −45.7 33.1

Table 3. Input parameters: ν2, l⊥, α, ζ, M2
H = 2ν2|ζ| and l = 1; output data: Ee−e− and ξab. Trial function: ϕ (r) = r3/2e−βr.

v2(meV) l⊥(Å) y α ζ (eV) MH =
√

2ν2|ζ| β Ee−e− (meV) ξab(Å)

30.0 16.0 4.0 2.0 −2.0 489.9 55.1 −71.5 53.7

30.0 15.5 4.0 2.0 −3.0 489.9 40.7 −23.2 72.7

30.0 15.5 4.0 3.0 −4.0 489.9 42.2 −56.2 70.1

32.0 15.0 4.0 2.0 −3.0 438.2 70.7 −49.5 41.9

32.0 15.0 4.0 1.0 −2.0 357.8 51.1 −18.0 58.9

50.0 10.0 4.0 1.5 −5.3 728.0 80.9 −43.9 36.6

50.0 10.0 4.0 1.5 −4.0 632.4 79.1 −77.3 37.4

50.0 10.0 4.0 0.8 −3.0 547.7 72.4 −49.5 40.9

50.0 10.0 4.0 0.5 −3.0 547.7 42.9 −25.0 45.0

80.0 6.5 3.8 1.0 −4.0 800.0 61.3 −21.6 48.3

80.0 6.5 3.8 0.5 −3.0 692.8 50.7 −18.8 58.4

80.0 6.5 3.8 0.5 −2.5 632.5 51.8 −52.3 57.1
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interaction coupling, in such a way to promote a sensi-
tive raising of the biding energy. In the particular case
of Table 3, it is evident a sensitive enhancement in the
value of ξab, a consequence of the isotropic trial function
that behaves as r3/2 at the origin. This isotropic character
results in a non-realistic approximation, since the angular
momentum state l = 1 must exhibit some anisotropy. This
observation attributes to the data of Table 3 a more qual-
itative aspect without invalidating the fundamental result
of this section: by means of a suitable fitting of the pa-
rameters, it is possible to obtain values of the energy and
the correlation length for the pairs e−e− inside a scale
usual for some solid state systems.

5 General conclusions

The electron-electron interaction potentials, derived from
a MCS-electrodynamics with spontaneous symmetry
breaking, puts in evidence the physical possibility of elec-
tronic pairing and the formation of bound states. This
theoretical prediction occurs when the parameters of the
model are so chosen that the contribution stemming from
the scalar (Higgs) sector overcomes the contribution in-
duced by the gauge boson exchange (always repulsive in
the energy scale relevant for the solid state excitations,
θ � me). The numerical results, displayed in Tables 1, 2
and 3, reveal the achievement of binding energies in the
meV-scale, and correlation lengths in the scale 10−30 Å,
which is a possible argument in favour of the MCS QED3

adopted here to address the electronic pairing process in
the realm of some condensed matter planar systems, with
manifestation of parity-breaking, such as the Hall systems
(there are also some references that discuss the noncon-
servation of parity symmetry in the context of the high-Tc
superconductors [11]).

Finally, we must observe that the present MCS model
bypasses the difficulties found by several other mod-
els [4,6,8,9] that attempted to obtain e−e− bound states
considering only the exchange of vector bosons. The
v2−values disposed in Tables 1, 2, 3 reconfirm the en-
ergy scale (10−100 meV) for the breaking of U(1)-local
symmetry obtained in the framework of planar supercon-
ductors [15,16] and in the case of a parity-preserving elec-
tronic pairing [16,17].

M.M.F. Jr. is grateful to CCP-CBPF for the kind hospital-
ity. J.A. Helayël-Neto expresses his gratitude to CNPq for the
invaluable financial help.

Appendix

In this Appendix one presents the spinor algebra so(1,2)
that generates the Dirac spinors, solutions of the Dirac
equation in D = 1 + 2-dimensions. The adopted metric
is ηµν = (+,−,−), and the Dirac equation is written as:

(/p−m)u+(p) = 0, (42)
(/p+m)u−(p) = 0, (43)

where u+(p), u−(p) stands for the positive energy spinors
with polarization “up” and “down” respectively. The so-
lution of the equations (42, 43) are given by:

u+(p) =
/p+m√

2m(E +m)
u+(m,

−→
0 ), (44)

u−(p) =
/p−m√

2m(E +m)
u+(m,

−→
0 ), (45)

where u+(m,
−→
0 ) and u−(m,

−→
0 ) represent an up-electron

and down-electron (respectively) in the rest frame:

u+(m,
−→
0 ) =

[
1
0

]
; u−(m,

−→
0 ) =

[
0
1

]
. (46)

In D = 1 + 2, the generators of the group SO(1,2) are
given by:

Σjl =
1
4
[γj,γl], (47)

where the γ matrices must satisfy the so(1, 2) algebra

[γµ, γν ] = 2iεµναγα, (48)

and are taken by: γµ = (σz ,−iσx, iσy).
Using this convention, the spinors u+(p), u−(p) are

written at the form:

u+(p) =
1√

2m(E +m)

[
E +m

−ipx − py

]
;

u+(p) =
1√

2m(E +m)

[
E +m −ipx + py

]
, (49)

u−(p) =
1√

2m(E +m)

[
ipx − py
E +m

]
;

u−(p) =
1√

2m(E +m)

[−ipx − py E +m
]
. (50)

They obviously satisfy the normalization condition:
u+(p)u+(p) = 1 and u−(p)u−(p) = −1.

In the center of mass frame, the 3-momenta of the
scattered electrons (elastic scattering hypothesis) can be
written as:

p1 = (E, p, 0), p1
′ = (E, p cosφ, p sinφ),

p2 = (E,−p, 0), p2
′ = (E,−p cosφ,−p sinφ),

k = p1
′ − p1 = (0, p(cosφ− 1), p sinφ),

where φ is the angle defined (in relation to the initial di-
rection) by the particles after the scattering.
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Adopting this convention, the current terms are eval-
uated:

[u+(p1
′)γ0u+(p1)] =

(E +m)2 + p2eiθ

2m(E +m)
= [u+(p2

′)γ0u+(p2)] ; (51)

[u+(p1
′)γ1u+(p1)] = − p

2m
(1 + eiθ)

= − [u+(p2
′)γ1u+(p2)] ; (52)

[u+(p1
′)γ2u+(p1)] =

−ip
2m

(1 − eiθ)

= − [u+(p2
′)γ2u+(p2)] ; (53)

[u−(p1
′)γ0u−(p1)] =

(E +m)2 + p2e−iθ

2m(E +m)
= [u−(p2

′)γ0u−(p2)] ; (54)

[u−(p1
′)γ1u−(p1)] = − p

2m
(1 + e−iθ)

= − [u−(p2
′)γ1u−(p2)] ; (55)

[u−(p1
′)γ2u−(p1)] =

ip
2m

(1 − e−iθ)

= − [u−(p2
′)γ2u−(p2)] . (56)

These current terms were used in the evaluation of the
scattering amplitudes in the nonrelativistic approxima-
tion: p2 � m2. Finally, given the correlation between mass
and spin [18], valid in QED3, it is reasonable to inquire if
the spinor u−(p) does not represent an antiparticle rather
than the spin-down particle. This issue is solved in the Ap-
pendix of reference [12], where one shows that the charge
of the spinor u−(p) is equal to one of the spinor u+(p).
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